Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Rep ; 38(11): 110514, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1739598

RESUMEN

The success of nucleoside-modified mRNAs in lipid nanoparticles (mRNA-LNP) as COVID-19 vaccines heralded a new era of vaccine development. For HIV-1, multivalent envelope (Env) trimer protein nanoparticles are superior immunogens compared with trimers alone for priming of broadly neutralizing antibody (bnAb) B cell lineages. The successful expression of complex multivalent nanoparticle immunogens with mRNAs has not been demonstrated. Here, we show that mRNAs can encode antigenic Env trimers on ferritin nanoparticles that initiate bnAb precursor B cell expansion and induce serum autologous tier 2 neutralizing activity in bnAb precursor VH + VL knock-in mice. Next-generation sequencing demonstrates acquisition of critical mutations, and monoclonal antibodies that neutralize heterologous HIV-1 isolates are isolated. Thus, mRNA-LNP can encode complex immunogens and may be of use in design of germline-targeting and sequential boosting immunogens for HIV-1 vaccine development.


Asunto(s)
Vacunas contra el SIDA , COVID-19 , VIH-1 , Nanopartículas , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , Epítopos , Ferritinas/genética , Anticuerpos Anti-VIH , Humanos , Liposomas , Ratones , ARN Mensajero , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
2.
STAR Protoc ; 1(3): 100209, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1386743

RESUMEN

We describe the production of single-cycle (sc) and replication-competent recombinant vesicular stomatitis viruses (rcVSVs) displaying heterologous envelope glycoproteins (Envs) on their surface. We prepare scVSVs by transiently expressing HIV-1 Envs or SARS-CoV-2 spike followed by infection of the cells with scVSV particles, which do not carry the vsv-g gene. To prepare rcVSVs, we replace the vsv-g with a specific env-encoding gene, transfect cells with multiple plasmids for production of the genomic RNA and viral proteins, and rescue replication-competent viruses.


Asunto(s)
Proteínas Recombinantes , Glicoproteína de la Espiga del Coronavirus , Estomatitis Vesicular/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Animales , COVID-19/virología , Línea Celular , Cricetinae , VIH-1/genética , Humanos , Ingeniería de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
3.
Cell ; 184(11): 2955-2972.e25, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1237636

RESUMEN

Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , VIH-1/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Polisacáridos/inmunología , SARS-CoV-2/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , Dimerización , Epítopos/inmunología , Glicosilación , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Macaca mulatta , Polisacáridos/química , Receptores de Antígenos de Linfocitos B/química , Virus de la Inmunodeficiencia de los Simios/genética , Vacunas/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
4.
Science ; 371(6526): 284-288, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1033401

RESUMEN

The ability for viruses to mutate and evade the human immune system and cause infection, called viral escape, remains an obstacle to antiviral and vaccine development. Understanding the complex rules that govern escape could inform therapeutic design. We modeled viral escape with machine learning algorithms originally developed for human natural language. We identified escape mutations as those that preserve viral infectivity but cause a virus to look different to the immune system, akin to word changes that preserve a sentence's grammaticality but change its meaning. With this approach, language models of influenza hemagglutinin, HIV-1 envelope glycoprotein (HIV Env), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike viral proteins can accurately predict structural escape patterns using sequence data alone. Our study represents a promising conceptual bridge between natural language and viral evolution.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/inmunología , COVID-19/inmunología , VIH-1/genética , Virus de la Influenza A/genética , Gripe Humana/inmunología , SARS-CoV-2/genética , Síndrome de Inmunodeficiencia Adquirida/virología , Sitios de Unión , COVID-19/virología , Evolución Molecular , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Gripe Humana/virología , Mutación , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA